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Abstract

Generalized hidden Markov models (GHMMs) appear to be
approaching acceptance as a de facto standard for state-of-the-art ab
initio gene finding, as evidenced by the recent proliferation of GHMM
implementations. While prevailing methods for modeling and parsing
genes using GHMMs have been described in the literature, little
attention has been paid as of yet to their proper training. The few hints
available in the literature together with anecdotal observations suggest
that most practitioners perform maximum likelihood parameter
estimation only at the local submodel level, and then attend to the
optimization of global parameter structure using some form of ad hoc
manual tuning of individual parameters. We decided to investigate the
utility of applying a more systematic optimization approach to the
tuning of global parameter structure by implementing a global
discriminative training procedure for our GHMM-based gene finder.
Our results show that significant improvement in prediction accuracy
can be achieved by this method. We conclude that training of GHMM-
based gene finders is best performed using some form of
discriminative training rather than simple maximum likelihood
estimation at the submodel level, and that generalized gradient ascent
methods are suitable for this task. We also conclude that partitioning
of training data for the twin purposes of maximum likelihood
initialization and gradient ascent optimization appears to be
unnecessary, but that strict segregation of test data must be enforced
during final gene finder evaluation to avoid artificially inflated
accuracy measurements.

Background

The number of generalized hidden Markov model (GHMM) gene finders reported in
the literature has increased fairly dramatically of late [1,2,3,4,5,6,7,8], and the
community is now contemplating various ways to extend this attractive framework in
order to incorporate homology information, with a handful of such systems having
already been built (e.g., [9,10,11,12]). GHMMs offer a number of clear advantages
which would seem to explain this growth in popularity. Chief among these is the fact
that the GHMM framework, being (in theory) purely probabilistic, allows for
principled approaches to constructing, utilizing, and extending models for accurate
prediction of gene structures.

While the decoding problem for GHMM gene finders is arguably well understood,
being a relatively straightforward extension of the same problem for traditional



HMMs and amenable to a Viterbi-like solution (albeit a more complex one), methods
for optimally training a GHMM gene finder have received scant attention in the gene-
finding literature to date. What information is available (e.g., [2,4]) seems to indicate
that the common practice is to optimize the submodels of the GHMM independently,
without regard for the optimality of the composite model.

The training of HMMs and GHMM s has traditionally been carried out using some
form of maximum likelihood estimation (MLE). Baum-Welch training [13], which is
an instance of the well-known expectation maximization (EM) procedure, is itself a
form of MLE [14]. In the case of GHMM gene finders, one typically applies some
form of MLE to each of the submodels (states) in the GHMM so as to render training
features of each type (e.g., exon, intron, donor site) maximally likely under the
induced (sub)model; i.e., maximizing:
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for state ¢ and for S; a feature of length d; from the state-g-specific training set 7. The
submodels are then merged into a composite model (i.e., the full GHMM) by
observing transition probabilities between features in the training data corresponding
to each of the GHMM states.

For example, an exon state in a GHMM can be trained by collecting n-gram
statistics (i.e., counts of n-letter substrings) from known exon sequences and
normalizing these into transition probabilities for an (n-l)th-order Markov chain [15].
Similarly, intron, intergenic, and untranslated region (UTR) states can be modeled by
collecting appropriate statistics from corresponding sample features and using these to
train individual content-scoring models, such as Markov chains, neural networks,
decision trees, etc. Signal sensors for donor and acceptor splice sites and start and stop
codons can be trained by aligning known signals of the appropriate type and counting
nucleotide frequencies at each position within a fixed window around the signal;
converting these counts to relative frequencies produces probability estimates for use
in a weight matrix or similar type of model. Transition and duration probabilities can
likewise be estimated by observing appropriate frequencies in training data. All of
these estimation activities can be performed independently, resulting in a GHMM
consisting of distinct subsets of maximum likelihood parameters.

Such an approach does not, however, attend to the global optimality of the
GHMM as a whole. Ideally, one would like to maximize the expected accuracy of the
gene finder on unseen data. A reasonable approximation to this ideal would be to
maximize the average probability of the gene parses in the training set:
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where the collection of model parameters making up the GHMM is denoted 0 and the
elements (S,¢) of the training set 7" comprise pairs of sequences S and their known
parses ¢. This argmax gives us the parameterization 0 under which the full gene
parses (rather than the sequences) in the training set will be maximally likely (on
average). Decomposing each parse ¢ into a series of (g;,d;) pairs, for state ¢; and state
duration (i.e., feature length) d;, we get:
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where P,, P,, and P, represent the emission, transition, and duration probabilities of
the GHMM, respectively. Whereas the common MLE training procedure for GHMMs
as described above optimizes the individual terms in the numerator of Equation 3
independently, the argmax above calls instead for these terms to be jointly tuned so as
to optimize the entire ratio in parentheses. Intuitively, one can think of this alternate
formulation as attempting to account for the process in the Viterbi algorithm (during
later decoding) whereby the individual submodels “compete” for nucleotides (in the
sense that each nucleotide can be emitted by only one submodel in any given parse,
and the Viterbi algorithm chooses the final, predicted parse based on the values of the
model parameters). Our hope is that by addressing the issue of submodel competition
explicitly during parameter estimation, we will thereby empower the gene finder to
better discriminate at a global sequence level between the features modeled by
individual submodels in the GHMM, thereby producing more accurate gene
predictions.

A similar optimization problem occurs in the field of speech recognition, in which
systems of interacting acoustic models and language models are employed to
optimally parse an audio stream into a series of discrete words. Interestingly, the trend
in that field, starting with Bahl ef al. in 1986 [16], has increasingly been away from
the sole use of MLE and toward an alternative approach very similar to that
prescribed by Equation 2 known as global discriminative training [17,18,19] or
conditional maximum likelihood [20]. The problem also appears in a slightly different
form in the related field of statistical natural language parsing, in which it has been
suggested that global methods for optimizing competing stochastic grammar models
may improve the accuracy of systems at the level of whole-sentence parses [21].
Maximum discrimination HMMs have already been applied successfully to problems
in the realm of biological sequence analysis [22], though their use in gene finding has
apparently not yet seen widespread adoption. To our knowledge, the only gene finder
reported to use discriminative training is HMMgene [23], a gene finder based on a
non-generalized HMM.

In light of these considerations, it is worth contemplating the possible gains in
gene finder accuracy that might be obtained through the use of some form of
discriminative training applied to a GHMM—that is, training aimed more directly at
optimizing the ability of the gene finder to discriminate between exons and non-
exons, thereby improving the expected accuracy of the gene finder’s predictions.
Anecdotal evidence already suggests that investigation of such methods may indeed
be fruitful, as the process of manual tuning of GHMM parameters (i.e., “tweaking”)
after MLE training is commonly acknowledged by those with experience training
GHMM-based gene finders (including our own systems). The practice of performing
such tuning on the training set, especially when done iteratively, can be viewed as a
manual form of gradient ascent optimization using the percentages of correctly
predicted nucleotides, exons, and whole genes as surrogates for the Xsg)er log
P(¢S,0) term in Equation 2.

We therefore decided to investigate the use of a simple form of global
discriminative training for gene-finding. We did this by building a rudimentary



gradient ascent optimizer and applying it to a subset of the model parameters for our
GHMM-based gene finder, TIGRscan, as described in the Methods.

Results

Maximum likelihood versus discriminative training

Results for Arabidopsis thaliana are shown in Table 1 and those for Aspergillus
fumigatus are shown in Table 2. The two methods being compared are maximum
likelihood estimation (MLE) versus maximum likelihood followed by gradient ascent
parameter estimation (GRAPE).

method | train test nucAcc exonF  geneSn
GRAPE |CV  CV 95+1% 82+2% 49+3%
GRAPE |CV  H  93+1% 80+2% 44+3%
GRAPE | T T 9% 86% 57%
GRAPE | T H 94% 81% 48%
MLE CV  CV 90£1% 724+2% 33+4%
MLE T T 91% 75% 36%
MLE T H 90% 71% 33%

Table 1 - Results on Arabidopsis thaliana

GRAPE= GRadient Ascent Parameter Estimation , MLE=Maximum Likelihood
Estimation only. CV=cross validation, T=training set, H=1000-gene hold-out (“test”)
set. CV in the train column means training on 800 genes from T. CV in fest column
means testing on 200 genes from T. In rows with a CV in either column, numbers are
averages from 5 runs. nucAcc=nucleotide accuracy, exonF=exon F score,
geneSn=gene sensitivity. F=2SnSp/(Sn+Sp) for Sn=sensitivity and Sp=specificity.
CV averages are reported £SD.

method | train test nucAcc exonF  geneSn
GRAPE |CV  CV 88+1% 54+4% 35+4%
GRAPE |CV  H  88+1% 51+2% 29+1%
GRAPE | T T 92% 65% 48%
GRAPE | T H 87% 51% 31%
MLE CV  CV 814£3% 274+8% 16£5%
MLE T T 88% 42% 28%
MLE T H 83% 30% 18%

Table 2 - Results on Aspergillus fumigatus
See Table 1 for legend.

The train column indicates whether training (i.e., parameter estimation) was
performed on the entire training set (T) or on separate 800-gene cross-validation
partitions (CV). The test column indicates whether accuracy was measured on the full
training set (T), on one-fifth of the training set (CV), or on the unseen data (H). We
will consider the evaluation on H to be the most reliable measure of gene finder
accuracy. For any row containing a CV, we report the average of five runs, where



each run used a different 800-gene subset of the training data for parameter
estimation.

Both tables give compelling evidence for the value of gradient ascent training, as
shown in Figure 1. In Arabidopsis, gradient ascent applied to the full training set
improved over the MLE method from 71% to 81% at the level of exons and 33% to
48% at the level of whole genes. In Aspergillus the improvement was even more
dramatic: 30% to 51% at the exon level and 18% to 31% for whole genes. A gain of
4% nucleotide accuracy was measured for both organisms.
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Figure 1 - Maximum likelihood versus gradient ascent

Gradient ascent parameter estimation (GRAPE) improves accuracy over MLE at the
nucleotide, exon, and whole gene levels. arab=Arabidopsis thaliana,
asp=Aspergillus fumigatus.

Data partitioning and cross validation

A tangible improvement was still seen when a cross-validation design was used to
split the training set so as to separate the data used for maximum likelihood estimation
(800 genes) and subsequent gradient ascent (200 genes). However, results from both
organisms suggest that this separation did not improve the accuracy of the gene
finder, as shown in Figure 2. Indeed, on Arabidopsis, gradient ascent training
produced greater gains in accuracy when performed on the entire training set rather
than using the cross-validation structure, while on Aspergillus the improvement due to
using a cross-validation structure was either small (nucleotide level: 1%), zero (exon
level), or negative (gene level: -2%). Thus, the recommended training protocol would
be to apply MLE to the entire training set followed by gradient ascent on the full
training set as well.
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Figure 2 - Data partitioning for gradient ascent

Separating the training set into an 800-gene MLE set and a 200-gene gradient ascent
set provides no improvement over simply performing MLE and GRAPE on the full
training set.

Although use of a cross-validation structure to split the training set for the twin
purposes of maximum likelihood estimation of ~90,000 parameters and gradient
ascent refinement of 29 parameters is therefore not justified (according to the above
results), cross-validation does seem to have some value in terms of predicting how
well the gene finder will perform on unseen data, as suggested by Figure 3.

RAPE cross-val

100% NUCLEOTIDE | GRAPE tested on H
' e MLE cross-val
B4 MLE tested on H

80%

6 60%
<
o
3]

O 40%
<

20%

0%

Figure 3 - Cross-validation versus testing on unseen data

Cross-validation scores provide a reasonably accurate prediction of performance on
unseen data. Results shown for A. thaliana only; results for A. fumigatus are given in
Table 2.



On both genomes and at all levels (nucleotide, exon, gene), accuracy
measurements obtained through cross-validation were closer to the accuracy
measured on unseen data than were the measurements taken from the full training set,
as we expected. This was true both with and without gradient ascent, though when
gradient ascent was applied, even the cross-validation results were slightly inflated.
The latter observation is presumably attributable to the “peeking” that was permitted
(see Methods), whereby the gradient ascent procedure received feedback from the 200
evaluation genes held out from the training set, T. This suggests that estimating even
small numbers of parameters (in this case 29) from the test set can artificially inflate
accuracy measurements on that set.
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Figure 4 - Evaluation on the training set

Accuracy measurements taken from the training set were artificially inflated, as
expected. Results are shown only for A. thaliana; results for A. fumigatus were even
more extreme.

Figure 4 illustrates the effects of testing the gene finder on the training set. As can
be seen from the figure, the accuracy measurements taken from the training set can be
substantially inflated relative to the more objective measurements taken from the
hold-out set, thereby promoting overly optimistic expectations for how the gene finder
will perform on unseen data.

Discussion

The results presented above provide a clear demonstration that independent maximum
likelihood estimation of submodel parameters is sufficiently neglectful of global
GHMM behavior as to compromise gene finder accuracy. Even such a crude method
as our 29-parameter gradient ascent procedure proved to be effective at significantly
improving accuracy over that achievable by simple MLE training. The potential for
more sophisticated global discriminative training methods to produce even greater
improvements is surely worthy of investigation.

It is interesting to observe that the natural language processing and speech
recognition communities, from whom HMM-based methods were originally borrowed



for use in bioinformatics, have been moving toward global discriminative training
methods for some time. The two most popular forms of discriminative training for
speech recognition are Maximum Mutual Information (MMI) and Minimum
Classification Error (MCE). Both methods can be implemented using an iterative
gradient ascent/descent algorithm. Our approach is most similar in spirit to that of
MCE.

In the case of “pure” (i.e., non-generalized) HMMs, expectation-maximization
(EM) update formulas have been derived for both MMI and MCE. These formulas
allow model parameters to be updated in an axis-oblique (rather than axis-parallel)
manner; i.e., multiple parameters can be adjusted simultaneously, so that the
optimizer is less constrained in following the direction of steepest gradient in
parameter space. This may reduce the number of steps required for convergence.
Indeed, more rapid convergence (in terms of numbers of re-evaluation steps) has been
cited as a concrete advantage of these EM-style formulations over more generalized
gradient ascent methods [23]. However, EM-style approaches to the discriminative
training problem for HMMs have typically involved a number of simplifying
assumptions and/or heuristics, thereby voiding formal assurances of optimality (e.g.,
[17,24,25,18,26]). Furthermore, as with more generalized gradient ascent procedures,
EM often tends to find only a local optimum rather than a global one [13].

In the case of GHMM-based gene finders, the advantages of EM over a
generalized gradient ascent procedure may indeed be rather slim. The very flexibility
which we find attractive in GHMMSs can be expected to complicate the derivation of
such EM-like update formulas for arbitrary GHMM-based gene finders, likely
requiring additional assumptions and approximations that would further compromise
the optimality of the EM procedure. It was for this reason that we decided to employ a
more generalized gradient ascent method for the present study. A rudimentary
gradient ascent optimizer is simple to implement, and the use of prediction accuracy
as an objective function affords great convenience in approximating >sger log
P(¢S,0). Although P(¢|S,0) can be more directly computed using a modified Forward
algorithm [23], to do so would in theory be no more efficient than running the full
gene finder, since the asymptotic run times of the Forward and Viterbi algorithms for
GHMMs are equivalent. Nevertheless, inasmuch as the Forward algorithm provides a
more direct approximation of P(¢|S,0), its use for this purpose is worthy of
investigation.

There are a number of other variations and enhancements which we are at present
contemplating for our discriminative trainer. One of these involves the joint training
of pairs of submodels in the GHMM using a maximum discrimination criterion rather
than the usual one based on maximum likelihood. Although such an approach would
not in itself directly attend to the global optimality of the GHMM (indeed, we already
apply such an approach to our signal sensors during our so-called “MLE” training
regime, as remarked earlier), it would at least seem to offer a promising direction for
improving our existing optimizer and may be feasible without increasing the
computational cost beyond what is practical.

For the present, we feel confident in making the recommendation that others
tasked with the training of GHMM gene finders consider applying an automated
gradient ascent procedure like that described here as a more systematic alternative to
manual tuning of parameters following maximum likelihood training of individual
submodels. Beyond the obvious advantage of likely improving gene finder accuracy,
such an automated method may offer some degree of reproducibility (notwithstanding
the typically stochastic nature of such methods) and uniformity for the purposes of



comparing gene finders and gene finding algorithms. In addition, we urge those
practicing manual tuning on their final “test” set to consider that their reported
accuracy results may well be inflated as a result of “peeking” at the test set before the
final evaluation—a practice that has been criticized in the field of machine learning
(eg., [27]). That significant inflation was seen in our studies as a result of tuning only
29 of the ~90,000 GHMM parameters on the 200-gene “test” set suggests that the
phenomenon may conceivably occur to some degree even when an automated
procedure is not employed.

Finally, we would like to make note of an unfortunate consequence of
discriminative training of HMMs for biological sequence analysis, namely, that while
the resulting models may possess improved ability for discrimination and therefore
greater utility for specific tasks such as gene prediction, their suitability as
representative models of biological knowledge (especially probabilistic knowledge)
may well be reduced relative to models induced with simple MLE techniques. Indeed,
some authors in the field of speech recognition (e.g., [20]) have noted that more
accurate discrimination can sometimes be obtained by relaxing sum-to-one constraints
for probability distributions, thereby permitting the gradient ascent procedure to
automatically discover appropriate weightings between states or inputs. This is
reminiscent of the exon “optimism” parameter which we employ and which seems to
have no principled justification (and indeed, we might speculate that this extraneous
parameter proved useful precisely because it enabled a primitive form of
discriminative training by providing an explicit “correction factor” or weighting
between submodels). Thus, despite the apparent value of discriminative training in
improving gene finder accuracy, our ability to extract biological knowledge by
inspecting the parameters of a gene finder trained in this way may be somewhat
hindered. For the present, this does not seem to be of great practical significance, but
it is a consideration worthy at least of mention.

Conclusions

We have shown that discriminative training for GHMM-based gene finders is feasible
using a rudimentary gradient ascent approach, and have briefly explored the relation
between this method and the EM-like techniques which have been proposed in the
field of speech recognition. Our experiments show that the gradient ascent method
can result in a gene finder with substantially greater prediction accuracy. It is our
hope that even greater gains in accuracy will result from extension and refinement of
discriminative training techniques applied to GHMM-based gene finders.

Methods

Description of the GHMM

The gene finder TIGRscan [8] is a GHMM-based program similar to GENIE [1]
and GENSCAN [2,28]. The forward-strand model contains six signal states (donor
and acceptor sites; start and stop codons; promoter; poly-A signal) and eight content
states (intron; intergenic; 5° and 3° UTR; initial, internal, final, and single exons). The
reverse-strand model mirrors that of the forward strand. Four relative frequency
histograms are used to estimate the duration probabilities of the four exon types; the
four noncoding states are assumed to have geometric duration distributions and are
therefore each parameterized by a single value representing the mean duration. Each
content state is scored using a separate fifth-order Interpolated Markov Model (IMM)



[29]. TIGRscan offers a number of signal sensors, including WMMs, WAMs,
WWAMs, and MDD trees [28] having any of the foregoing signal sensors as leaf
models; for this study we used only (non-MDD) WAMs, though the order of the
Markov chains within the WAMSs was allowed to vary. Putative signals scoring below
a given signal threshold are ignored by TigrScan. This threshold is chosen separately
for each signal sensor so as to achieve a desired sensitivity Sn (Sn=TP/(TP+FN),
TP=true positive count, FN=false negative count) on a training set of true and
“decoy” signals. “Boosting” of signal sensors was performed by iteratively retraining
each signal sensor on sets of training features in which the lowest scoring features
were duplicated so as to focus the training procedure on the most difficult examples.
Boosting has been found to improve signal detection in other application areas [30].
Most transitions in the GHMM are obligatory (such as “donor site — acceptor site”);
of the non-obligatory transitions, sum-to-one constraints and the forward/reverse
strand equivalence reduce the number which can be independently varied to just four.
Transitions into exon states are modified by an exon “optimism” multiplier which has
been seen anecdotally to be useful in improving prediction accuracy (unpublished
data).

Parameters to be optimized

The total number of parameters which need to be estimated when training
TigrScan is roughly 90,000; the large bulk of these are the n-gram statistics
comprising the IMMs used for the content sensors. As an initial attempt at applying
discriminative training to TigrScan, we selected 29 of these ~90,000 parameters to
subject to gradient ascent optimization. Although this is a miniscule proportion of the
available parameters, our previous experiences with hand-tuning our GHMM on other
data sets suggested that these 29 parameters exert a disproportionately large influence
on the accuracy of the gene predictions. By limiting the number of parameters to be
optimized we hoped to both accelerate the training procedure and also reduce the risk
of overtraining. The selected parameters were:

e mean intron, intergenic, and UTR lengths (3)
transition probabilities (4)
exon optimism (1)
WAM size and relative positioning (8)
WAM order (4)
signal sensitivity (1)
number of signal boosting iterations (8)
o skew and kurtosis of exon length distributions
Modifications to skew and kurtosis of exon length distributions were found during
early exploration to produce no improvements; these parameters were therefore left
unchanged in all further experiments. All remaining parameters were estimated using
standard MLE techniques.

For those runs in which gradient ascent was disabled (see below), the following
methods were used to estimate the above 29 parameters: mean intron and UTR
lengths as well as transition probabilities were estimated using MLE from training
data; mean intergenic length was set to a fixed value based on the known intergenic
lengths in the test set; exon optimism was set to zero; remaining parameters were
selected so as to minimize the misclassification rate on a set of true and “decoy”
signals selected from the training set.
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Objective function and optimization procedure

As an objective function for use by the gradient ascent procedure, we decided to
measure the accuracy of the current parameterization by running the gene finder on a
subset of the training genes. Our hope was that this accuracy measure would provide a
reasonable approximation of > s ¢t log P(¢[S,0) by indicating roughly how often the
current model 6 would cause the correct parse ¢ to be predicted for training sequence
S. We defined the nucleotide accuracy 4,,. as the percentage of nucleotides correctly
classified as coding vs. noncoding; A..,,» was defined as an average of exon sensitivity
and specificity (where a predicted exon is considered correct only if both boundary
coordinates were predicted correctly); and Ag... was defined as the percentage of
training genes which were predicted exactly correctly. These were all rounded to
integral percentages between 0 and 100%. The objective function was then defined as:

f(e): 1004,..+A4 exon+Agene~ (4)

The A4,,. and A..,, terms were included in an effort to smooth the function, which
would otherwise have been insensitive to changes not reflected in the number of
genes predicted exactly correctly—i.e., a step function. Though the 4,,. term was
given much greater weight for this study, additional work needs to be undertaken to
determine the most suitable set of weights for our objective function.

T (1000 genes)
N

x5

final evaluation

— -
— 1—-
|

final model files

reported
accuracy

Figure 5 - Gradient ascent training

Schematic diagram of gradient ascent training procedure. Of 29 parameters modified
by gradient ascent, some (e.g., WAM size) were used to control the MLE estimation
procedure, while others (e.g., mean intron length) were used directly as parameters to
the GHMM. Testing of the gradient direction was performed on the 200-gene cross-
validation set, which was part of the 1000-gene training set, T.
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Parameters were optimized using an iterative gradient ascent procedure operating
in the selected 29-dimensional parameter space, as illustrated schematically in Figure
5. Steps were taken in an axis-parallel manner (one step per axis per iteration), with
the step size for each axis decreasing by half whenever a local maximum was reached
on that axis.

Data and experimental design

The quality of a given parameterization 6 was measured by evaluating the
objective function f(0) on a held-out subset of the training set. The training set was
limited to 1000 genes, and all experiments were repeated separately on two highly
divergent species, the model plant Arabidopsis thaliana and the pathogenic fungus
Aspergillus fumigatus. Five-fold cross-validation was employed, so that the entire
optimization procedure was carried out five times on four-fifths of the data (800
genes) and each time evaluated on the remaining one-fifth (200 genes); accuracy
results reported here were obtained by averaging the five sets of accuracy numbers
obtained from the cross-validation.

set T (training) set H (holdout set)
1000 genes 1000 genes
A A
- N N

5-fold
cross
validation

evaluation on

holdout set
5 accuracy scores
average l
accuracy on
mean & variance holdout set

Figure 6 - Cross-validation experiments

Five-fold cross-validation was used both in the gradient ascent and in the MLE-only
experiments. For gradient ascent training, MLE was performed on four-fifths of the
training set (T) and then gradient ascent was performed on the other one-fifth. A
separate hold-out set (H) of 1000 genes was used to obtain an unbiased evaluation of
all final models.

The held-out one-fifth was also used by the gradient ascent procedure to tune the
selected 29 parameters. The practice of using a held-out set for smoothing or to
estimate a small number of additional parameters is common in the natural language
processing field [31], where it is recognized that such “peeking” at the test set (by
which we mean iterative re-estimation of model parameters from the training set after
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receiving accuracy feedback on the test set) by the training procedure can
(unfortunately) artificially inflate reported accuracy numbers. For this reason, an
additional 1000 genes were used for testing the gene finder after each cross-validation
run. The results of this final testing were not made available to the optimizer, but are
instead reported here as a more objective assessment of final model accuracy. We will
refer to the training set as T and the additional 1000 genes for testing as H. BLAST
[32] was used to ensure that no two genes in TUH were more than 80% similar over
80% of their lengths at the nucleotide level. This training protocol is illustrated in
Figure 6.

Several variations of this experiment were also performed. To evaluate the utility
of splitting the training set and performing MLE and gradient ascent parameter
estimation on separate subsets (as described above), we also performed MLE
followed by gradient ascent training on the full training set T and again evaluated the
induced models on H. To assess whether gradient ascent provided any improvement
in accuracy we also trained a model on T using only MLE and evaluated that model
on H. Although the virtues of cross-validation have been well explored in the context
of many other applications, we decided to use the above experimental design as a
convenient opportunity to verify our expectation that it would also prove useful for
objective analysis of gene finder accuracy.
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