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ABSTRACT
Motivation: The recent explosion of interest in mining
the biomedical literature for associations between defined
entities such as genes, diseases and drugs has made
apparent the need for robust methods of identifying
occurrences of these entities in biomedical text. Such
concept-based indexing is strongly dependent on the
availability of a comprehensive ontology or lexicon of
biomedical terms. However, such ontologies are very
difficult and expensive to construct, and often require
extensive manual curation to render them suitable for use
by automatic indexing programs. Furthermore, the use of
statistically salient noun phrases as surrogates for curated
terminology is not without difficulties, due to the lack
of high-quality part-of-speech taggers specific to medical
nomenclature.
Results: We describe a method of improving the quality of
automatically extracted noun phrases by employing prior
knowledge during the HMM training procedure for the tag-
ger. This enhancement, when combined with appropriate
training data, can greatly improve the quality and relevance
of the extracted phrases, thereby enabling greater accu-
racy in downstream literature mining tasks.
Contact: bmajoros@tigr.org

INTRODUCTION
The last few years have seen a remarkable growth of
interest in mining the biomedical literature for various
types of knowledge, including protein–protein interactions
(e.g. Onoet al., 2001; Jenssenet al., 2001; Marcotte
et al., 2001; Stapley and Benoit, 2000; Ng and Wong,
1999; Blaschkeet al., 1999; Thomaset al., 2000), novel
hypotheses about disease (e.g. Swanson and Smalheiser,
1999), relations between drugs, genes and cells (e.g.
Friedmanet al., 2001; Rindfleschet al., 2000; Tanabe
et al., 1999), protein structure (e.g. Demetriouet al.,
2000), and protein function (e.g. Andrade and Valencia,
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Fig. 1. The central role of concept indexing in biomedical text
mining. More difficult (and valuable) tasks and resources are shown
higher on the page, with those most elusive goals shown with
shading.

1998). Although these works collectively employ a diverse
array of techniques in the pursuit of an equally diverse
set of goals, an obvious feature of most of them is a
strong dependence on their ability to reliably identify
named entities of interest in the text in order to produce
accurate results. For example, attempts to infer statistical
associations between genes or other entities based on
their co-occurrence within documents or within sentences
can be quite sensitive to both false-positives and false-
negatives in term identification (Jenssenet al., 2001;
Yandell and Majoros, 2002). For this reason, techniques
which rely on a controlled vocabulary or curated lexicon
of terms can be severely limited by the quality of that
lexicon. A lexicon which is poorly structured, contains
ambiguous terms, or is in some other way inadequate can
render an otherwise promising algorithm much less useful.
These ideas are depicted in Figure 1, which illustrates
the dependence of various mining tasks on theconcept
indexing phase of these systems.

Although many specialized lexica are available, we
are not aware of a lexicon which is both comprehensive
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and ideally suited for concept indexing in biomedicine.
For example, the UMLS Metathesaurus (Lindberget
al., 1993), one of the best known sources of controlled
vocabulary for medicine, is a seemingly comprehensive
terminology resource in some technical areas, though
shown to be inadequate due to redundancy, omissions,
homonyms, acronyms, abbreviations, elisions, proper
names, and spelling errors (Nadkarniet al., 2001). For
this and other reasons, various groups have resorted to
utilizing uncurated terminology, or phrases extracted
dynamically from literature, sometimes in combination
with existing curated terminology (Yoshidaet al., 2000;
Thomaset al., 2000; Rindfleschet al., 2000; Ng and
Wong, 1999; Sekimizuet al., 1998; Fukudaet al., 1998;
Lindberg et al., 1993). We believe that the most useful
types of dynamically extracted phrases are noun phrases,
which (not coincidentally) appear to account for the vast
majority of specialized terminology in biomedical text.

To gain an appreciation of the richness of specialized
terminology represented in the noun phrases in MED-
LINE, it is instructive to note that while UMLS contains
∼1.7 million concept phrases, it is possible to identify
∼7.4 million distinct core noun phrases in MEDLINE.
Upon inspection, many of these appear to represent useful
biomedical concepts, worthy of use in various mining
efforts. In fact, we have found them to be very useful
for various forms of co-occurrence analysis, hypothesis
generation, and summarization tasks (unpublished data).
Uncurated concepts are thus of demonstrable value,
notwithstanding the obvious drawbacks stemming from
their lack of curation and placement within a standard
ontology.

Another motivation for the use of noun phrases as
surrogates for curated concepts derives from the continual
emergence of new gene and protein names in published
literature (Friedmanet al., 2001; Ng and Wong, 1999).
Simply tagging them as nouns should allow most of these
new gene and protein names to be reliably extracted.
Indeed, in the absence of strong suffix cues, modern
part-of-speech taggers tend to tag unknown words as
nouns (Manning and Schütze, 2000; Brill, 1992; Brill and
Marcus, 1992; Cuttinget al., 1992), which will generally
favor the accurate identification of noun phrases, since
specialized words often belong in noun phrases.

Reliable extraction of useful noun phrases from
biomedical text is not yet a perfected art, however. The
main difficulty stems from the lack of a highly accurate
part-of-speech tagger for biomedical text. Existing taggers
are generally pre-trained on relatively generic text, such
as the Brown Corpus (Francis and Kučera, 1982) or the
SUSANNE Corpus (Sampson, 1994), neither of which
are primarily medical in content. Hence, such a tagger
would be confronted with a large number of unfamiliar
words when applied to a corpus such as MEDLINE,

resulting in a reduction of tagging accuracy (Manning and
Scḧutze, 2000). Although many taggers provide retraining
features, such retraining invariably requires a large sample
of manually (or semi-manually) tagged training sentences
(Brill, 1992; Cuttinget al., 1992).

Some taggers attempt to make an ‘educated’ guess at
the part-of-speech for an unfamiliar word based on the
word ending (Manning and Schütze, 2000; Charniaket al.,
1993; Brill, 1992; Brill and Marcus, 1992; Cuttinget al.,
1992). For example, an -ed or -ing ending is often taken
as an indication that the word is a verb. However, many
such verbs encountered in biomedical text are actually
behaving as participles. These can be effectively treated
as adjectives for the purpose of noun phrase extraction
(e.g.striated muscle, or nictitating membrane). However,
not all -ed and -ing verbs act as adjectives (even those
identified by a tagger as participles). Thus, guesses based
on word morphology are often incorrect.

Finally, phrases extracted from MEDLINE using the
simple heuristic of finding continuous runs of adjectives
and nouns are often only a subphrase of what most people
would agree is the more desirable, complete phrase (for
example, immunodeficiency syndrome versus acquired
immunodeficiency syndrome; cell versusnucleated cell),
and thus extracted noun phrases often lack the specificity
of a genuinely informative biomedical concept. Although
recent work on ‘chunking’ methods to find noun phrases
has produced encouraging results, virtually all of that
work has been directed toward nonmedical corpora such
as the Wall Street Journal (Ramshaw and Marcus, 1998;
Pla et al., 2000; Zhou and Su, 2000; Sanget al., 2000;
Veenstra and Buchholz, 1998; Zhouet al., 2000), and
many of these systems assume that part-of-speech tags
have already been correctly assigned before chunking is
carried out.

Thus, an important and as yet unsolved problem is
how to readily obtain a part-of-speech tagger specifically
geared toward biomedical text, so that high-quality noun
phrases can be extracted for use in concept indexing and
other downstream mining tasks.

We investigated whether the retraining of a tagger for
MEDLINE could be automated by incorporating existing
sets of curated phrases into the training process in a
well-defined and principled way. Our hypothesis was that
beginning with a corpus of text tagged by a naı̈ve tagger
and constraining the training process to respect known
phrases, a less naı̈ve tagger would be obtained which
would be able to identify not just the curated phrases
provided during training, but also other phrases having
similar phrase structure. Such an approach would be more
feasible than traditional retraining practices, because it
eliminates the need to manually tag large sets of training
sentences, benefiting instead from existing lists of curated
terminology.
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Fig. 2. The process used to retrain an HMM tagger by incorporating prior knowledge in the form of curated concepts.

METHODS
The use of Markov models for part-of-speech tagging is
common practice (Manning and Schütze, 2000; Charniak
et al., 1993; Cuttinget al., 1992), and is perhaps the sim-
plest of the proven methods for tagging. Our approach in-
cluded modifying a basic Markov model tagger with states
corresponding to part-of-speech tags and an alphabet of
symbols corresponding to individual words. This process
is depicted schematically in Figure 2.

We used a curated lexicon of phrases extracted from
UMLS (including genes, diseases, post-translational mod-
ifications, molecular functions, biological processes, and
anatomical terms) to modify the HMM probabilities so
that words comprising those phrases are more likely to be
tagged as adjectives and nouns, not only when they occur
in those phrases, but also when they occur in novel phrases
not included in the lexicon.

However, we wished to avoid simplistic tuning of the
parameters in an unprincipled way. In particular, our goal
was to modify the emission and transmission probabilities
in tandem, and in a way which allowed the surrounding
context of the curated phrases to influence the precise
tagging of the individual words in the phrase. We posited
that this would eliminate unintended side-effects that
could reduce overall tagging accuracy.

Thus, we have devised a process which employs two
versions of the Viterbi algorithm—a standard, unmodified
version for final deployment, and a modified version
which is used only during training to force curated
concepts to be tagged as noun phrases, thereby modifying
the tag frequencies in the tagged training corpus. This
tagged training corpus is then used to train the final,
improved HMM for deployment. The improved HMM

already incorporates to some degree implicit knowledge
of the curated concepts and their constituent words in its
transition and emission probabilities, so the final tagger
can utilize the standard Viterbi algorithm, and need not
refer directly to the list of curated concepts.

The principal modification to the Viterbi algorithm
is the inclusion of a termδ(i, πi ) which ‘zeros-out’
the probability of any complete-sentence tag assignment
which would assign an undesirable tag to any word
participating in a known concept within the sentence:

π∗ = arg max
π

[(
L∏

i=1

P(xi |πi )δ(i, πi )

)

×Pstart(π1)Pstop(πL)

L−1∏
i=1

P(πi+1|πi )

]

δ(i, πi ) =
{

0 if i ∈ phrase∧ πi /∈ {NOUN, ADJ}
1 otherwise

where P(xi | πi ) is the probability of stateπi emitting
word xi , P(πi+1 | πi ) is the transition probability from
stateπi to stateπi+1, and Pstart(πi ) and Pstop(πi ) are
the probabilities of starting and stopping in stateπi ,
respectively. The final tag assignment is given byπ∗ =
(π1, π2, . . . , πL).

In practice, this modification corresponds to ‘masking’
in the dynamic programming matrix any cell which
denotes the assignment of any tag other than NOUN
or ADJ (adjective) to a column occupied by a curated
concept, as illustrated in Figure 3.

Once masking has been performed, we proceed ac-
cording to the normal operation of the Viterbi algorithm,
choosing the most likely path through the dynamic
programming matrix and assigning tags accordingly. The
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Fig. 3. Masking in the dynamic programming matrix. Cells which
correspond to assignment of a non-noun/non-adjective tag to a word
occurring within a curated concept are set to zero probability.

effect of masking is to preclude any path which passes
through a masked cell from being chosen, and hence from
any word in a concept from being assigned an undesirable
tag.

A full specification of the dynamic programming algo-
rithm is given at http://www.tigr.org/imhotep.

Unfortunately, masking can lead to situations where all
paths have zero probability, as would happen, for example,
if a word in a concept occurrence is only known by
the näıve tagger to have one of the undesired tags. In
order to ensure that at least one nonzero-probability path
passes through a given column, we adjust the local model
parameters as necessary to produce nonzero entries in the
nonmasked region of the column. We do this as follows.

Each cell is normally defined as the product of three
quantities,vk,i−1, the value of a cell in the previous
column,P(q j |qk), the transition probability from that cell
to this cell, andP(xi |q j ), the emission probability for
this cell. A zero can result if any of these three terms are
zero. We prefer to attribute the lack of nonzero cells in
this column to erroneous knowledge about the probability
distribution over tags for this word, rather than to incorrect
knowledge about transition probabilities in medical text.
Therefore, if any productsvk,i−1P(q j |qk) are nonzero, we
obtain a nonzero product by simply assuming a uniform
distribution over tags for a given word; i.e.P(q j |xi ) =
1/|Q| for |Q| the number of states in the HMM. From
this estimate ofP(q j |xi ) we obtain its Bayesian inverse,
P(xi |q j ) = P(xi )/(P(q j ) |Q|), for the final term in
the product defining this cell. However, if all products
vk,i−1P(q j |qk) are zero, we resort to using a uniform
distribution for transitions; i.e.P(q j |qk) = 1/|Q|. By
induction, we can assume that at least onevk,i−1 is
nonzero, so we need only attend to the transition and
emission probabilities, as we have done.

For a training set we used∼30 000 MEDLINE doc-

uments published since the late 1990s. This corpus
contained a total of∼12 million words drawn from a
vocabulary of∼120 000. Our curated lexicon consisted
of ∼246 000 concepts selected from UMLS, and included
such entities as genes, diseases, post-translational mod-
ifications, protein domains, drugs, tissues, immunology
terms, organisms, biological processes, and molecular
functions.

Tagged sentences were scanned for noun phrases by
finding multiword sequences consisting of at least one
noun and an arbitrary number of additional nouns and ad-
jectives. Phrases found by this simple heuristic tend to be
good approximations for core, nonrecursive noun phrases.
We chose not to include prepositions and conjunctions
because doing so often results in ‘run-on’ phrases that
are less useful for concept indexing. Nevertheless, we
acknowledge that many useful phrases (e.g. ‘cirrhosis
of the liver’) are missed in this way, and a that a more
sophisticated approach is called for (perhaps by observing
the pointwise mutual information between the sub-phrases
surrounding the preposition).

In order to estimate the magnitude of the improvement
achieved through retraining, we took the first 10 000
noun phrases (approximately 2200 sentences in 270
documents) that were extracted and manually scored the
differences between the old and new taggers by examining
the questionable phrases in context. Extracted phrases
were scored by penalizing a tagger for omitting words
that actually belonged in a phrase and for including
words which did not belong. Differences between phrase
predictions of the two taggers were then classified as either
beneficial or detrimental, based on the difference in phrase
score.

RESULTS
Of the 108 nontrivial differences found between the old
and new taggers, 91 (84%) were judged to be beneficial
changes, and 17 (16%) were judged to be detrimental.
Although the differences appear to affect only a small
minority of all noun phrases (108 out of 10 000 or roughly
1%), it is important to realize that many noun phrases
encountered in text are not highly informative terms, or
are not specific to biomedicine, and these are of no interest
to us. Rather, our method specifically targets multi-word
biomedical terms, and it is clear that our changes to the
tagger did in fact enhance its ability to extract these. Of
the new terms found by the improved tagger, 96% were
judged to be highly relevant to biomedicine, and of these,
86% were not already present in our lexica.

Examples of phrases which were improved by the new
tagger are shown in Table 1. The improved phrases were
often more specific than those produced by the naı̈ve
tagger, and therefore more suitable for advanced data
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Table 1. Example phrases produced by the original tagger (before retraining)
and the new tagger (after retraining). Additional examples can be found at
http://www.tigr.org/imhotep

Before retraining After retraining

Immunodeficiency syndrome Acquired immunodeficiency syndrome
Tubulin Tubulin folding intermediates
Erythrocytes Fetal nucleated erythrocytes
Collagen Collagen folding diseases
Receptor gene Human androgen receptor gene
Axons Mature myelinated axons
Transport Electrolyte transport
Withdrawal Androgen withdrawal
Differentiation Adipocyte differentiation
Cells Positive multinucleated cells

mining activities. Furthermore, the erroneous differences
were very often due to the attachment of an article
or preposition to the beginning or end of an otherwise
valid phrase, and it is tempting to speculate that these
types of simple errors might be rectified by very minor
modifications to our algorithm, though we have not
investigated this possibility.

To see that the tagger has actually generalized the
knowledge provided in the curated concepts, note that a
novel discovered phrase, ‘dentate granule cells,’ does not
occur in our curated lexicon, although ‘dentate cerebellar
ataxia,’ ‘specific granule deficiency,’ and ‘tumor cells’ do.
Indeed, even ‘granule cells’ does not occur in the lexicon.
Thus, the tagger is finding additional noun phrases which
were not explicitly provided during training.

DISCUSSION
The majority of improvements to noun phrases made by
our heuristic appear to involve the retagging of certain
verbs as adjectives when in the vicinity of the other parts
of a noun phrase. However, our method tends to restrict
retagging to only those verbs which have been observed
acting as adjectives in the curated lexicon. Furthermore,
our simple modification to the Viterbi algorithm attends
not only to participles, but also to other parts of speech that
only occasionally participate in core noun phrases, such as
the article ‘A’ in ‘blood group A.’ For this reason, we feel
that our method is more elegant than the various ad-hoc
approaches that attempt to ‘patch up’ the noun phrase after
part-of-speech tagging.

A somewhat surprising feature of our method is that it
has the ability not only to include in noun phrases words
which had previously been excluded, but to sometimes
exclude those that the naı̈ve tagger would have (erro-
neously) included. An example is ‘Bacillus thuringiensis
exhibits’ which was truncated by the new method to
‘Bacillus thuringiensis.’ Whereas ‘exhibits’ is often used

as a verb in scientific text, in less specialized discourse
it is often used as a noun, as in ‘The museum has many
fine exhibits.’ Näıvely, one might reason that a word not
occurring in the curated lexicon would have an unchanged
tag distribution and therefore behave as it previously had,
but in fact the emission probabilities of the HMM states
for such words are affected by the addition of new words
to the word class, due to the rescaling of probabilities
(which must still sum to 1), and this can apparently reduce
the emission probability of other words enough (under the
right circumstances) to change their assigned tag. Thus,
the example phrases might be said to provide not only
‘positive reinforcement,’ but also ‘negative reinforcement’
through the absence of certain words in those phrases.

Although our method has significantly improved the
quality of the extracted phrases, additional improvement is
necessary. For example, our tagger still has difficulty with
the word ‘in’ in phrases such as ‘in situ’ and ‘in vivo.’
We expect many of these remaining errors to disappear
with the use of better and more varied training lexica.
Additional work is also necessary to develop methods for
accurately extracting larger, recursive noun phrases (i.e.
including prepositions and conjunctions).

There are other types of prior knowledge that may be
incorporated into the tagger, such as would result by
‘subtracting’ a medical corpus from a non-medical corpus
and then down-weighting the probability of the resulting
terms from forming useful phrases.

An important direction in which our research needs to
be extended is in the handling of unfamiliar words, which
we precluded by using identical training and test sets. The
class of complete-word Markov models that we employed
is not readily applicable to the problem of guessing the
tag distributions for novel words, though it is conceivable
that similar techniques might be applied to portions of
words in order to employ morphological cues specific to
biomedical terminology in guessing the appropriate tag for
a novel word. For the purposes of the current work, we
considered the problem of handling unfamiliar words to
be an entirely separate line of inquiry, albeit an interesting
one, and worthy of attention. Currently, our tagger simply
assumes that all novel words are nouns.

In conclusion, we encourage additional efforts to im-
prove the state of biomedical part-of-speech tagging, and
hope that a standard, publicly available tagger will soon
emerge, so that future work can concentrate on the more
important tasks of extracting real medical knowledge from
literature.
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