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ABSTRACT
Summary: We describe two new Generalized Hidden Markov
Model implementations for ab initio eukaryotic gene prediction.
The C/C++ source code for both is available as open source
and is highly reusable due to their modular and extensible
architectures. Unlike most of the currently available gene-
finders, the programs are re-trainable by the end user. They
are also re-configurable and include several types of probab-
ilistic submodels which can be independently combined, such
as Maximal Dependence Decomposition trees and interpol-
ated Markov models. Both programs have been used at TIGR
for the annotation of the Aspergillus fumigatus andToxoplasma
gondii genomes.
Availability: Source code and documentation are available
under the open source Artistic License from http://www.tigr.org/
software/pirate.
Contact: bmajoros@tigr.org

INTRODUCTION
With the increased availability of raw genomic sequence data
has come an increase in the number of gene-finder programs
available for predicting the protein-coding genes in these data.
Unfortunately, the vast majority of these programs cannot eas-
ily be retrained by end users, because these packages rarely
include retraining software, and in most cases the source code
is not available, which also limits modification and reuse of
these programs for functionally different annotation tasks.

We describe two new gene finders, GlimmerHMM and
TigrScan, which are based on the same class of models as
Genscan (Burge, 1997) and Genie (Kulp et al., 1996), namely,
a Generalized Hidden Markov Model (GHMM). GHMMs
offer the advantage of providing a probabilistically rigorous
framework in which alternative gene-finding strategies can be
readily explored. Furthermore, since our source code is avail-
able as open source, and because the programs are written in a
highly modular C/C++ style, reusing portions of the programs
for novel annotation tasks is made quite feasible.
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METHODS
A Hidden Markov Model (HMM) is a state-based generat-
ive model which transitions stochastically from state to state,
emitting a single symbol from each state according to that
state’s emission probabilities. A GHMM generalizes this pro-
cess by emitting complete gene features, or subsequences, in
each state. Because each state can be associated with a dif-
ferent gene feature type (e.g. donor, exon, etc.), a GHMM
provides an intuitive and flexible framework for exploring
alternative gene-finding approaches. For example, feature
states can be independently retrained, and different types
of submodels (e.g. Markov models, weight matrices, etc.)
can be used at each state. Predicting gene models with a
GHMM involves finding the most probable path, φ, through
the GHMM topology given the sequence, S; i.e. maximizing
P(φ|S). Bayes’ theorem and the invariance of the marginal
probability P(S) with respect to individual paths φ gives:

argmax
φ

P (φ|S) = argmax
φ

P (φ ∧ S)

P (S)
= argmax

φ
P (φ ∧ S)

= argmax
φ

P (S|φ)P (φ).

Because the GHMM allows explicit modeling of state duration
(feature length) di for each state qi in parse φ, this can be
factored into

argmax
φ

∏

qi∈φ

P (Si |qi ∧ di)P (qi |qi−1)P (di),

where P(qi |qi−1) is the probability of transitioning from state
qi−1 to qi , Si is the subsequence emitted by state qi , and
P(di) is the probability of state qi emitting a feature of length
di . These can all be estimated from training data through
various well-known means (e.g. Salzberg et al., 1998). This
optimization step can be efficiently evaluated using a dynamic
programming approach.

Though both TigrScan and GlimmerHMM conform to the
overall mathematical framework of a GHMM, they differ sig-
nificantly from each other and from our previous gene finders
in the details of their implementation—specifically, in the

2878 Bioinformatics vol. 20 issue 16 © Oxford University Press 2004; all rights reserved.

http://www.tigr.org/


Two open source eukaryotic gene-finders

Table 1. Results on a set of 800 full-length Arabidopsis thaliana cDNAs
(a.t.) and on 360 curated Aspergillus fumigatus CDSs (a.f.)

% Nucl.
accuracy

% Exon
sensitivity

% Exon
specificity

% Exact
genes

a.t. a.f. a.t. a.f. a.t. a.f. a.t. a.f.

TigrScan 96 90 77 37 81 47 43 19
GlimmerHMM 96 91 71 36 79 49 33 21
Genscan+ 95 87 75 23 82 4 35 11

Exon sensitivity = TP/(TP+FN), where TP stands for true positives and FN for
false negatives, with a TP indicating that both exon coordinates were correct. Exon
specificity = TP/(TP+FP), where FP stands for false positives. Exact genes is the per-
centage of the test CDSs for which the predictions were entirely correct. Genscan+ is
an A.thaliana specific version of Genscan provided to us by C. Burge.

statistical methods employed at the submodel level and in
their overall software architecture. Whereas TigrScan util-
izes several types of weight matrices and Markov chains,
GlimmerHMM additionally incorporates splice site mod-
els adapted from the GeneSplicer program (Pertea et al.,
2001) and a decision tree adapted from GlimmerM (Salzberg
et al., 1999). Both programs utilize interpolated Markov
models (Salzberg et al., 1999) as well as the Maximal
Dependence Decomposition technique for improving spe-
cificity in splice site identification (Burge, 1997). Currently,
TigrScan’s GHMM structure includes introns of each phase,
intergenic regions, 5′- and 3′-untranslated regions (5′- and 3′-
UTRs), and four types of exons (initial, internal, final, and
single). GlimmerHMM includes states for exons, introns and
intergenic regions.

TigrScan also provides as an optional feature the construc-
tion of a graph-theoretic representation of all high-scoring
open reading frames. Such graphs have been found to be useful
in several ongoing research projects, including a homology-
based gene finder as well as two other projects which explore
unconventional approaches to genomic annotation. TigrScan
can also read and score an arbitrary gene model provided in
GFF format. These features allow us to dynamically explore
the immense space of suboptimal gene models in ways that
are simply not possible with most other gene finders.

RESULTS
Both programs performed well in tests when compared with
Genscan+ (Table 1). Of the three gene finders, TigrScan
was found to perform most competitively on the A.thaliana
test set for three of the four reported measures, whereas

Table 2. Memory and time requirements on a 922 kb A.fumigatus contig

Memory (Mb) Time (min)

GlimmerHMM 84 0:17
TigrScan 29 1:28
Genscan+ 445 2:57

GlimmerHMM was found to perform best on the A.fumigatus
test set for three of the measures. The greater difference
in accuracy between our gene finders and Genscan+ on the
A.fumigatus set demonstrates the value of being able to retrain
the gene finders for specific organisms.

Time and memory requirements of both programs increase
linearly with the length of the input sequence, though the two
programs make different trade-offs between speed and space,
as can be seen from Table 2. TigrScan successfully processed
a 5.6 Mb contig in 5 min 32 s using 105 Mb of RAM on a
1.6 GHz Pentium IV, illustrating that long sequences can be
processed even on machines with relatively limited memory.

By offering both these programs to the community as open
source, we hope to facilitate more studies comparing the
suitability of alternate gene-finding strategies.
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